On "Testing group commutativity" by F.Magniez and A.Nayak

Laura Mancinska

University of Waterloo, Department of C\&O

April 3, 2008

Introduction

Black box groups

Black box group model

- Elements of the group are encoded as words over a finite alphabet

Black box groups

Black box group model

- Elements of the group are encoded as words over a finite alphabet
- Group operation is performed by a black box containing oracles O_{G} and O_{G}^{-1}

$$
\begin{gathered}
O_{G}|g, h\rangle=|g, g h\rangle \\
O_{G}^{-1}|g, h\rangle=\left|g, g^{-1} h\right\rangle
\end{gathered}
$$

Black box groups

Black box group model

- Elements of the group are encoded as words over a finite alphabet
- Group operation is performed by a black box containing oracles O_{G} and O_{G}^{-1}

$$
\begin{gathered}
O_{G}|g, h\rangle=|g, g h\rangle \\
O_{G}^{-1}|g, h\rangle=\left|g, g^{-1} h\right\rangle
\end{gathered}
$$

When do we use black box groups?

Group Commutativity

Problem

Input: Generators g_{1}, \ldots, g_{k} of G (specified as n-bit strings)

Group Commutativity

Problem

Input: Generators g_{1}, \ldots, g_{k} of G (specified as n-bit strings)
Black box: Oracles O_{G} and O_{G}^{-1}

Group Commutativity

Problem

Input: Generators g_{1}, \ldots, g_{k} of G (specified as n-bit strings)
Black box: Oracles O_{G} and O_{G}^{-1}
Task: Determine whether G is abelian

Classical algorithms for Group commutativity

- Naive algorithm with query complexity $\Theta\left(k^{2}\right)$. This is optimal deterministic algorithm up to a constant [I.Pak, 2000].

Classical algorithms for Group commutativity

- Naive algorithm with query complexity $\Theta\left(k^{2}\right)$. This is optimal deterministic algorithm up to a constant [I.Pak, 2000].
- Randomized algorithm with query complexity $\Theta(k)$ [I.Pak, 2000]. This is optimal randomized algorithm up to a constant [F.Magniez, A.Nayak, 2005]

Randomized algorithm for group commutativity

Definition. Define random subproduct as

$$
h=g_{1}^{a_{1}} \ldots g_{k}^{a_{k}}
$$

where $a_{i} \in\{0,1\}$ are determined by independent tosses of a fair coin.

Randomized algorithm for group commutativity

Definition. Define random subproduct as

$$
h=g_{1}^{a_{1}} \ldots g_{k}^{a_{k}}
$$

where $a_{i} \in\{0,1\}$ are determined by independent tosses of a fair coin.

Algorithm:
(1) Take two random subproducts h_{1}, h_{2}

Randomized algorithm for group commutativity

Definition. Define random subproduct as

$$
h=g_{1}^{a_{1}} \ldots g_{k}^{a_{k}}
$$

where $a_{i} \in\{0,1\}$ are determined by independent tosses of a fair coin.

Algorithm:
(1) Take two random subproducts h_{1}, h_{2}
(2) Test whether $h_{1} h_{2}=h_{2} h_{1}$

Randomized algorithm for group commutativity

Definition. Define random subproduct as

$$
h=g_{1}^{a_{1}} \ldots g_{k}^{a_{k}},
$$

where $a_{i} \in\{0,1\}$ are determined by independent tosses of a fair coin.

Algorithm:
(1) Take two random subproducts h_{1}, h_{2}
(2) Test whether $h_{1} h_{2}=h_{2} h_{1}$
(3) Repeat steps 1,2 for c times (to give correct answer with probability at least $1-\left(\frac{3}{4}\right)^{c}$)

Randomized algorithm for group commutativity

Definition. Define random subproduct as

$$
h=g_{1}^{a_{1}} \ldots g_{k}^{a_{k}}
$$

where $a_{i} \in\{0,1\}$ are determined by independent tosses of a fair coin.

Algorithm:
(1) Take two random subproducts h_{1}, h_{2}
(2) Test whether $h_{1} h_{2}=h_{2} h_{1}$
(3) Repeat steps 1,2 for c times (to give correct answer with probability at least $1-\left(\frac{3}{4}\right)^{c}$)
(9) Answer that G is abelian if the tested subproducts commuted

Randomized algorithm for group commutativity

Definition. Define random subproduct as

$$
h=g_{1}^{a_{1}} \ldots g_{k}^{a_{k}}
$$

where $a_{i} \in\{0,1\}$ are determined by independent tosses of a fair coin.

Algorithm:
(1) Take two random subproducts h_{1}, h_{2} ($\leq 2 k$ queries)
(2) Test whether $h_{1} h_{2}=h_{2} h_{1}$
(3) Repeat steps 1,2 for c times (to give correct answer with probability at least $1-\left(\frac{3}{4}\right)^{c}$)
(9) Answer that G is abelian if the tested subproducts commuted

Randomized algorithm for group commutativity

Definition. Define random subproduct as

$$
h=g_{1}^{a_{1}} \ldots g_{k}^{a_{k}}
$$

where $a_{i} \in\{0,1\}$ are determined by independent tosses of a fair coin.

Algorithm:
(1) Take two random subproducts h_{1}, h_{2} ($\leq 2 k$ queries)
(2) Test whether $h_{1} h_{2}=h_{2} h_{1}$ (2 queries)
(3) Repeat steps 1,2 for c times (to give correct answer with probability at least $1-\left(\frac{3}{4}\right)^{c}$)
(9) Answer that G is abelian if the tested subproducts commuted

Quantum algorithm

Main steps

- Construct a random walk on a graph

Main steps

- Construct a random walk on a graph
- Quantize the random walk using Szegedy's approach

Main steps

- Construct a random walk on a graph
- Quantize the random walk using Szegedy's approach
- Evaluate the quantities in

$$
S+\frac{1}{\sqrt{\delta \varepsilon}}(U+C)
$$

Constructing random walk

S_{l} - the set of all l-tuples of distinct elements from $\{1, \ldots, k\}$

Constructing random walk

S_{l} - the set of all l-tuples of distinct elements from $\{1, \ldots, k\}$ $g_{u}:=g_{u_{1}} \ldots g_{u_{l}}$, where $u=\left(u_{1}, \ldots, u_{l}\right) \in S_{l}$

Constructing random walk

S_{l} - the set of all l-tuples of distinct elements from $\{1, \ldots, k\}$ $g_{u}:=g_{u_{1}} \ldots g_{u_{l}}$, where $u=\left(u_{1}, \ldots, u_{l}\right) \in S_{l}$
t_{u} - balanced binary tree with generators $g_{u_{1}}, \ldots, g_{u_{l}}$ as leaves

Constructing random walk

S_{l} - the set of all l-tuples of distinct elements from $\{1, \ldots, k\}$ $g_{u}:=g_{u_{1}} \ldots g_{u_{l}}$, where $u=\left(u_{1}, \ldots, u_{l}\right) \in S_{l}$
t_{u} - balanced binary tree with generators $g_{u_{1}}, \ldots, g_{u_{l}}$ as leaves

Example. Let $l=4, k=20, u=\{3,5,10,4\} \in S_{4}$.

Constructing random walk

S_{l} - the set of all l-tuples of distinct elements from $\{1, \ldots, k\}$ $g_{u}:=g_{u_{1}} \ldots g_{u_{l}}$, where $u=\left(u_{1}, \ldots, u_{l}\right) \in S_{l}$
t_{u} - balanced binary tree with generators $g_{u_{1}}, \ldots, g_{u_{l}}$ as leaves

Example. Let $l=4, k=20, u=\{3,5,10,4\} \in S_{4}$. Then $g_{u}=g_{3} \cdot g_{5} \cdot g_{10} \cdot g_{4}$ and t_{u} looks as follows

Constructing random walk

Random walk on S_{l}

- States are trees $t_{u}, u \in S_{l}$

Constructing random walk

Random walk on S_{l}

- States are trees $t_{u}, u \in S_{l}$
- Transitions from each t_{u} are as follows
- With probability $1 / 2$ stay at t_{u}

Constructing random walk

Random walk on S_{l}

- States are trees $t_{u}, u \in S_{l}$
- Transitions from each t_{u} are as follows
- With probability $1 / 2$ stay at t_{u}
- With probability $1 / 2$ do
(1) Pick a random leave position $i \in\{1, \cdots, l\}$ and a random generator index $j \in\{1, \cdots, k\}$

Constructing random walk

Random walk on S_{l}

- States are trees $t_{u}, u \in S_{l}$
- Transitions from each t_{u} are as follows
- With probability $1 / 2$ stay at t_{u}
- With probability $1 / 2$ do
(1) Pick a random leave position $i \in\{1, \cdots, l\}$ and a random generator index $j \in\{1, \cdots, k\}$
(2) If $j=u_{m}$ for some m, exchange u_{i} and u_{m}, else set $u_{i}=j$

Constructing random walk

Random walk on S_{l}

- States are trees $t_{u}, u \in S_{l}$
- Transitions from each t_{u} are as follows
- With probability $1 / 2$ stay at t_{u}
- With probability $1 / 2$ do
(1) Pick a random leave position $i \in\{1, \cdots, l\}$ and a random generator index $j \in\{1, \cdots, k\}$
(2) If $j=u_{m}$ for some m, exchange u_{i} and u_{m}, else set $u_{i}=j$
(3) Update tree t_{u}

Constructing quantum walk

We quantize a random walk consisting of two independent random walks on S_{l}

Constructing quantum walk

We quantize a random walk consisting of two independent random walks on S_{l}

- States are pairs of trees $\left(t_{u}, t_{v}\right)$, where $u, v \in S_{l}$

Constructing quantum walk

We quantize a random walk consisting of two independent random walks on S_{l}

- States are pairs of trees $\left(t_{u}, t_{v}\right)$, where $u, v \in S_{l}$
- If transition matrix of the walk on S_{l} was P, then the new transition matrix is $P \otimes P$

Constructing quantum walk

We quantize a random walk consisting of two independent random walks on S_{l}

- States are pairs of trees $\left(t_{u}, t_{v}\right)$, where $u, v \in S_{l}$
- If transition matrix of the walk on S_{l} was P, then the new transition matrix is $P \otimes P$

Vertex $\left(t_{u}, t_{v}\right)$ is marked iff $g_{u} g_{v} \neq g_{v} g_{u}$.

Evaluating parameters - the fraction of marked vertices

Lemma. If G is not abelian and $l=o(k)$ then

$$
\operatorname{Pr}_{u, v \in S_{l}}\left[g_{u} g_{v} \neq g_{v} g_{u}\right] \geq \text { const } \cdot\left(\frac{l}{k}\right)^{2}
$$

Evaluating parameters - the fraction of marked vertices

Lemma. If G is not abelian and $l=o(k)$ then

$$
\operatorname{Pr}_{u, v \in S_{l}}\left[g_{u} g_{v} \neq g_{v} g_{u}\right] \geq \text { const } \cdot\left(\frac{l}{k}\right)^{2}
$$

Thus, fraction of marked vertices, $\varepsilon=\Omega\left(\left(\frac{l}{k}\right)^{2}\right)$

Evaluating parameters - the spectral gap

Lemma. If $l \leq \frac{k}{2}$, then the spectral gap for the walk on S_{l} is at least $\frac{1}{8 e l \log l}$.

Evaluating parameters - the spectral gap

Lemma. If $l \leq \frac{k}{2}$, then the spectral gap for the walk on S_{l} is at least $\frac{1}{8 e l \log l}$.

Thus, the spectral gap, $\delta=\Omega\left(\frac{1}{l \log l}\right)$

Estimating parameters - setup, update and checking cost

- Setup cost, $S=\Theta(l)$

Estimating parameters - setup, update and checking cost

- Setup cost, $S=\Theta(l)$
- Update cost, $U=\Theta(\log (l))$

Estimating parameters - setup, update and checking cost

- Setup cost, $S=\Theta(l)$
- Update cost, $U=\Theta(\log (l))$
- Checking cost $C=O(1)$

Query complexity of the quantum algorithm

$$
\begin{array}{|l|}
\hline \varepsilon=\Omega\left(\left(\frac{l}{k}\right)^{2}\right) \\
\hline \delta=\Omega\left(\frac{1}{l \log l}\right) \\
\hline S=\Theta(l) \\
\hline U=\Theta(\log l) \\
\hline C=\Theta(1) \\
\hline
\end{array}
$$

Query complexity of the quantum algorithm

$\varepsilon=\Omega\left(\left(\frac{l}{k}\right)^{2}\right)$
$\delta=\Omega\left(\frac{1}{l \log l}\right)$
$S=\Theta(l)$
$U=\Theta(\log l)$
$C=\Theta(1)$

$$
S+\frac{1}{\sqrt{\delta \varepsilon}}(U+C)
$$

Query complexity of the quantum algorithm

$\varepsilon=\Omega\left(\left(\frac{l}{k}\right)^{2}\right)$
$\delta=\Omega\left(\frac{1}{l \log l}\right)$
$S=\Theta(l)$
$U=\Theta(\log l)$
$C=\Theta(1)$

$$
S+\frac{1}{\sqrt{\delta \varepsilon}}(U+C)=O\left(l+\frac{k \log ^{3 / 2} l}{\sqrt{l}}\right)
$$

Query complexity of the quantum algorithm

$\varepsilon=\Omega\left(\left(\frac{l}{k}\right)^{2}\right)$
$\delta=\Omega\left(\frac{1}{l \log l}\right)$
$S=\Theta(l)$
$U=\Theta(\log l)$
$C=\Theta(1)$

$$
S+\frac{1}{\sqrt{\delta \varepsilon}}(U+C)=O\left(l+\frac{k \log ^{3 / 2} l}{\sqrt{l}}\right)
$$

Query complexity of the quantum algorithm

$$
\begin{array}{r}
\begin{array}{|l|}
\hline \varepsilon=\Omega\left(\left(\frac{l}{k}\right)^{2}\right) \\
\hline \delta=\Omega\left(\frac{1}{l \log l}\right) \\
\hline S=\Theta(l) \\
\hline U=\Theta(\log l) \\
\hline C=\Theta(1) \\
\hline S+\frac{1}{\sqrt{\delta \varepsilon}}(U+C)=O\left(l+\frac{k \log ^{3 / 2} l}{\sqrt{l}}\right)
\end{array}
\end{array}
$$

To minimize quantum query complexity we set $l=k^{2 / 3}$ and get

$$
O\left(k^{2 / 3} \log k\right)
$$

Lower bounds

Unique collision

$$
\text { Black box: Function } f:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}
$$

Unique collision

Black box: Function $f:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$ Input: Value of k

Unique collision

Black box: Function $f:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$ Input: Value of k
Task: Output YES if there exists a unique pair $x \neq y \in\{1, \ldots, k\}$ such that $f(x)=f(y)$. Output NO if f is a permutation.

Unique collision

Black box: Function $f:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$ Input: Value of k
Task: Output YES if there exists a unique pair $x \neq y \in\{1, \ldots, k\}$ such that $f(x)=f(y)$. Output NO if f is a permutation.

Unique split collision

Output YES if there exists a unique pair x, y such that $x \in\left\{1, \ldots, \frac{k}{2}\right\}, y \in\left\{\frac{k}{2}+1, \ldots, k\right\}$ such that $f(x)=f(y)$.

Theorem

The quantum query complexity of unique split collision is $\Omega\left(k^{2 / 3}\right)$.

Unique collision

Black box: Function $f:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$ Input: Value of k
Task: Output YES if there exists a unique pair $x \neq y \in\{1, \ldots, k\}$ such that $f(x)=f(y)$. Output NO if f is a permutation.

Unique split collision

Output YES if there exists a unique pair x, y such that $x \in\left\{1, \ldots, \frac{k}{2}\right\}, y \in\left\{\frac{k}{2}+1, \ldots, k\right\}$ such that $f(x)=f(y)$.

Theorem

The quantum query complexity of unique split collision is $\Omega\left(k^{2 / 3}\right)$.

Theorem

The quantum query complexity of group commutativity is $\Omega\left(k^{2 / 3}\right)$.

Theorem

The quantum query complexity of group commutativity is $\Omega\left(k^{2 / 3}\right)$.

Idea: Reduce unique split collision to group commutativity by constructing a group that is commutative iff function f has a unique split collision.

Summary

Problem. Decide whether group specified by k generators is abelian.

- Classical query complexity is $\Theta(k)$.

Summary

Problem. Decide whether group specified by k generators is abelian.

- Classical query complexity is $\Theta(k)$.
- Quantum query complexity is upper bounded by $O\left(k^{2 / 3} \log k\right)$ (algorithm based on Q-walk) and lower bounded by $\Omega\left(k^{2 / 3}\right)$.

