On "Testing group commutativity" by F.Magniez and A.Nayak

Laura Mancinska

University of Waterloo, Department of C&O

April 3, 2008

Introduction

Black box groups

Black box group model

• Elements of the group are encoded as words over a finite alphabet

Black box groups

Black box group model

- Elements of the group are encoded as words over a finite alphabet
- Group operation is performed by a black box containing oracles ${\cal O}_G$ and ${\cal O}_G^{-1}$

$$\begin{split} O_G \left| g, h \right\rangle &= \left| g, gh \right\rangle \\ O_G^{-1} \left| g, h \right\rangle &= \left| g, g^{-1}h \right\rangle \end{split}$$

Black box groups

Black box group model

- Elements of the group are encoded as words over a finite alphabet
- Group operation is performed by a black box containing oracles O_G and O_G^{-1}

$$\begin{split} O_G \left| g, h \right\rangle &= \left| g, gh \right\rangle \\ O_G^{-1} \left| g, h \right\rangle &= \left| g, g^{-1}h \right\rangle \end{split}$$

When do we use black box groups?

Group Commutativity

Problem

Input: Generators g_1, \ldots, g_k of G (specified as n-bit strings)

Group Commutativity

Problem

Input: Generators g_1, \ldots, g_k of G (specified as n-bit strings) Black box: Oracles O_G and O_G^{-1}

Group Commutativity

Problem

- Input: Generators g_1, \ldots, g_k of G (specified as n-bit strings) Black box: Oracles O_G and O_G^{-1}
- Task: Determine whether G is abelian

Classical algorithms for Group commutativity

• Naive algorithm with query complexity $\Theta(k^2)$. This is optimal *deterministic* algorithm up to a constant [I.Pak, 2000].

Classical algorithms for Group commutativity

- Naive algorithm with query complexity $\Theta(k^2)$. This is optimal *deterministic* algorithm up to a constant [I.Pak, 2000].
- Randomized algorithm with query complexity $\Theta(k)$ [I.Pak, 2000]. This is optimal *randomized* algorithm up to a constant [F.Magniez, A.Nayak, 2005]

Definition. Define random subproduct as

$$h = g_1^{a_1} \dots g_k^{a_k},$$

where $a_i \in \{0,1\}$ are determined by independent tosses of a fair coin.

Definition. Define random subproduct as

$$h = g_1^{a_1} \dots g_k^{a_k},$$

where $a_i \in \{0,1\}$ are determined by independent tosses of a fair coin.

Algorithm:

 $\textcircled{0} Take two random subproducts <math>h_1, h_2$

Definition. Define random subproduct as

$$h = g_1^{a_1} \dots g_k^{a_k},$$

where $a_i \in \{0,1\}$ are determined by independent tosses of a fair coin.

- **①** Take two random subproducts h_1, h_2
- 2 Test whether $h_1h_2 = h_2h_1$

Definition. Define random subproduct as

$$h = g_1^{a_1} \dots g_k^{a_k},$$

where $a_i \in \{0, 1\}$ are determined by independent tosses of a fair coin.

- **①** Take two random subproducts h_1, h_2
- 2 Test whether $h_1h_2 = h_2h_1$
- Seperat steps 1,2 for c times (to give correct answer with probability at least $1-\left(\frac{3}{4}\right)^c)$

Definition. Define random subproduct as

$$h = g_1^{a_1} \dots g_k^{a_k},$$

where $a_i \in \{0, 1\}$ are determined by independent tosses of a fair coin.

- **①** Take two random subproducts h_1, h_2
- 2 Test whether $h_1h_2 = h_2h_1$
- Sepeat steps 1,2 for c times (to give correct answer with probability at least $1-\left(\frac{3}{4}\right)^c)$
- Answer that G is abelian if the tested subproducts commuted

Definition. Define random subproduct as

$$h = g_1^{a_1} \dots g_k^{a_k},$$

where $a_i \in \{0, 1\}$ are determined by independent tosses of a fair coin.

- Take two random subproducts $h_1, h_2 \ (\leq 2k \ \text{queries})$
- 2 Test whether $h_1h_2 = h_2h_1$
- Sepeat steps 1,2 for c times (to give correct answer with probability at least $1-\left(\frac{3}{4}\right)^c)$
- Answer that G is abelian if the tested subproducts commuted

Definition. Define random subproduct as

$$h = g_1^{a_1} \dots g_k^{a_k},$$

where $a_i \in \{0, 1\}$ are determined by independent tosses of a fair coin.

- Take two random subproducts $h_1, h_2 \ (\leq 2k \ \text{queries})$
- 2 Test whether $h_1h_2 = h_2h_1$ (2 queries)
- Sepeat steps 1,2 for c times (to give correct answer with probability at least $1-\left(\frac{3}{4}\right)^c)$
- Answer that G is abelian if the tested subproducts commuted

Quantum algorithm

• Construct a random walk on a graph

Main steps

- Construct a random walk on a graph
- Quantize the random walk using Szegedy's approach

Main steps

- Construct a random walk on a graph
- Quantize the random walk using Szegedy's approach
- Evaluate the quantities in

$$S + \frac{1}{\sqrt{\delta\varepsilon}}(U+C)$$

 S_l – the set of all l-tuples of distinct elements from $\{1,\ldots,k\}$

 S_l – the set of all l-tuples of distinct elements from $\{1,\ldots,k\}$ $g_u := g_{u_1}\ldots g_{u_l}$, where $u = (u_1,\ldots,u_l) \in S_l$

 S_l – the set of all *l*-tuples of distinct elements from $\{1, \ldots, k\}$ $g_u := g_{u_1} \ldots g_{u_l}$, where $u = (u_1, \ldots, u_l) \in S_l$ t_u – balanced binary tree with generators g_{u_1}, \ldots, g_{u_l} as leaves

 S_l – the set of all *l*-tuples of distinct elements from $\{1, \ldots, k\}$ $g_u := g_{u_1} \ldots g_{u_l}$, where $u = (u_1, \ldots, u_l) \in S_l$ t_u – balanced binary tree with generators g_{u_1}, \ldots, g_{u_l} as leaves

Example. Let $l = 4, k = 20, u = \{3, 5, 10, 4\} \in S_4$.

 S_l – the set of all *l*-tuples of distinct elements from $\{1, \ldots, k\}$ $g_u := g_{u_1} \ldots g_{u_l}$, where $u = (u_1, \ldots, u_l) \in S_l$ t_u – balanced binary tree with generators g_{u_1}, \ldots, g_{u_l} as leaves

Example. Let $l = 4, k = 20, u = \{3, 5, 10, 4\} \in S_4$. Then $g_u = g_3 \cdot g_5 \cdot g_{10} \cdot g_4$ and t_u looks as follows

Random walk on S_l

• States are trees t_u , $u \in S_l$

- States are trees t_u , $u \in S_l$
- Transitions from each t_u are as follows
 - With probability $1/2\ {\rm stay}\ {\rm at}\ t_u$

- States are trees t_u , $u \in S_l$
- Transitions from each t_u are as follows
 - With probability 1/2 stay at t_u
 - $\bullet~{\rm With~probability}~1/2~{\rm do}$
 - 0 Pick a random leave position $i \in \{1, \cdots, l\}$ and a random generator index $j \in \{1, \cdots, k\}$

- States are trees t_u , $u \in S_l$
- Transitions from each t_u are as follows
 - With probability 1/2 stay at t_u
 - $\bullet~{\rm With~probability}~1/2~{\rm do}$
 - $\textcircled{0} \mbox{ Pick a random leave position } i \in \{1,\cdots,l\} \mbox{ and a random generator index } j \in \{1,\cdots,k\}$
 - 2 If $j = u_m$ for some m, exchange u_i and u_m , else set $u_i = j$

- States are trees t_u , $u \in S_l$
- Transitions from each t_u are as follows
 - With probability 1/2 stay at t_u
 - $\bullet~{\rm With~probability}~1/2~{\rm do}$
 - $\textcircled{0} \mbox{Pick a random leave position } i \in \{1,\cdots,l\} \mbox{ and a random generator index } j \in \{1,\cdots,k\}$
 - 2 If $j = u_m$ for some m, exchange u_i and u_m , else set $u_i = j$ 3 Update tree t_u

We quantize a random walk consisting of two independent random walks on ${\cal S}_l$

We quantize a random walk consisting of two independent random walks on ${\cal S}_l$

• States are pairs of trees (t_u, t_v) , where $u, v \in S_l$

We quantize a random walk consisting of two independent random walks on ${\cal S}_l$

- States are pairs of trees (t_u, t_v) , where $u, v \in S_l$
- If transition matrix of the walk on S_l was P, then the new transition matrix is $P\otimes P$

We quantize a random walk consisting of two independent random walks on ${\cal S}_l$

- States are pairs of trees (t_u, t_v) , where $u, v \in S_l$
- If transition matrix of the walk on S_l was P, then the new transition matrix is $P\otimes P$

Vertex (t_u, t_v) is marked iff $g_u g_v \neq g_v g_u$.

Evaluating parameters – the fraction of marked vertices

Lemma. If G is not abelian and l = o(k) then

$$\Pr_{u,v\in S_l}[g_ug_v\neq g_vg_u]\geq const\cdot \left(\frac{l}{k}\right)^2$$

Evaluating parameters – the fraction of marked vertices

Lemma. If G is not abelian and l = o(k) then

$$\Pr_{u,v\in S_l}[g_ug_v\neq g_vg_u]\geq const\cdot \left(\frac{l}{k}\right)^2$$

Thus, fraction of marked vertices, $\varepsilon = \Omega\left(\left(\frac{l}{k}\right)^2\right)$

Evaluating parameters – the spectral gap

Lemma. If $l \leq \frac{k}{2}$, then the spectral gap for the walk on S_l is at least $\frac{1}{8e \, l \log l}$.

Evaluating parameters – the spectral gap

Lemma. If $l \leq \frac{k}{2}$, then the spectral gap for the walk on S_l is at least $\frac{1}{8e \, l \log l}$.

Thus, the spectral gap, $\delta = \Omega\left(\frac{1}{l \log l}\right)$

Estimating parameters – setup, update and checking cost

• Setup cost,
$$S = \Theta(l)$$

Estimating parameters – setup, update and checking cost

- Setup cost, $S=\Theta(l)$
- Update cost, $U = \Theta(\log(l))$

Estimating parameters – setup, update and checking cost

- Setup cost, $S=\Theta(l)$
- Update cost, $U = \Theta(\log(l))$
- Checking cost C = O(1)

$$\begin{aligned} \varepsilon &= \Omega\left(\left(\frac{l}{k}\right)^2\right) \\ \delta &= \Omega\left(\frac{1}{l\log l}\right) \\ S &= \Theta(l) \\ U &= \Theta(\log l) \\ C &= \Theta(1) \end{aligned}$$

$$\begin{aligned} \varepsilon &= \Omega\left(\left(\frac{l}{k}\right)^2\right)\\ \delta &= \Omega\left(\frac{1}{l\log l}\right)\\ S &= \Theta(l)\\ U &= \Theta(\log l)\\ C &= \Theta(1) \end{aligned}$$

$$S + \frac{1}{\sqrt{\delta\varepsilon}}(U+C)$$

$$\begin{aligned} \varepsilon &= \Omega\left(\left(\frac{l}{k}\right)^2\right)\\ \delta &= \Omega\left(\frac{1}{l\log l}\right)\\ S &= \Theta(l)\\ U &= \Theta(\log l)\\ C &= \Theta(1) \end{aligned}$$

$$S + \frac{1}{\sqrt{\delta\varepsilon}}(U+C) = O\left(l + \frac{k\log^{3/2}l}{\sqrt{l}}\right)$$

$$\begin{aligned} \varepsilon &= \Omega\left(\left(\frac{l}{k}\right)^2\right)\\ \delta &= \Omega\left(\frac{1}{l\log l}\right)\\ S &= \Theta(l)\\ U &= \Theta(\log l)\\ C &= \Theta(1) \end{aligned}$$

$$S + \frac{1}{\sqrt{\delta\varepsilon}}(U+C) = O\left(l + \frac{k\log^{3/2}l}{\sqrt{l}}\right)$$

$$\begin{aligned} \varepsilon &= \Omega\left(\left(\frac{l}{k}\right)^2\right) \\ \delta &= \Omega\left(\frac{1}{l\log l}\right) \\ S &= \Theta(l) \\ U &= \Theta(\log l) \\ C &= \Theta(1) \end{aligned}$$

$$S + \frac{1}{\sqrt{\delta\varepsilon}}(U+C) = O\left(l + \frac{k\log^{3/2}l}{\sqrt{l}}\right)$$

To minimize quantum query complexity we set $l = k^{2/3}$ and get

 $O(k^{2/3}\log k)$

Lower bounds

Black box: Function $f : \{1, \ldots, k\} \rightarrow \{1, \ldots, k\}$

Black box: Function $f : \{1, \dots, k\} \rightarrow \{1, \dots, k\}$ Input: Value of k

Black box: Function $f : \{1, ..., k\} \rightarrow \{1, ..., k\}$ Input: Value of kTask: Output YES if there exists a unique pair $x \neq y \in \{1, ..., k\}$ such that f(x) = f(y). Output NO if f is a permutation.

Black box: Function
$$f : \{1, ..., k\} \rightarrow \{1, ..., k\}$$

Input: Value of k
Task: Output YES if there exists a unique pair $x \neq y \in \{1, ..., k\}$
such that $f(x) = f(y)$. Output NO if f is a permutation.

Unique split collision

Output YES if there exists a unique pair x, y such that $x \in \{1, \ldots, \frac{k}{2}\}, y \in \{\frac{k}{2} + 1, \ldots, k\}$ such that f(x) = f(y).

Theorem

The quantum query complexity of unique split collision is $\Omega(k^{2/3})$.

Black box: Function
$$f : \{1, ..., k\} \rightarrow \{1, ..., k\}$$

Input: Value of k
Task: Output YES if there exists a unique pair $x \neq y \in \{1, ..., k\}$
such that $f(x) = f(y)$. Output NO if f is a permutation.

Unique split collision

Output YES if there exists a unique pair x, y such that $x \in \{1, \ldots, \frac{k}{2}\}, y \in \{\frac{k}{2} + 1, \ldots, k\}$ such that f(x) = f(y).

Theorem

The quantum query complexity of unique split collision is $\Omega(k^{2/3})$.

Theorem

The quantum query complexity of group commutativity is $\Omega(k^{2/3})$.

Theorem

The quantum query complexity of group commutativity is $\Omega(k^{2/3})$.

Idea: Reduce *unique split collision* to group commutativity by constructing a group that is commutative iff function f has a unique split collision.

Problem. Decide whether group specified by k generators is abelian.

• Classical query complexity is $\Theta(k)$.

Problem. Decide whether group specified by k generators is abelian.

- Classical query complexity is $\Theta(k)$.
- Quantum query complexity is upper bounded by $O(k^{2/3} \log k)$ (algorithm based on Q-walk) and lower bounded by $\Omega(k^{2/3})$.